• центр детского развития
 
 
44

Книга Детский университет

Детский университет

Недавно в издательстве «Самокат» вышла книга «Детский университет. Исследователи объясняют загадки мира» Уллы Штойернагель и Ульриха Янссена. В ней детям совсем не скучно рассказывают, откуда берутся молния и гром, почему мальчики и девочки ведут себя по-разному, зачем люди рассказывают истории и многое другое. «Мел» публикует фрагмент главы «Почему математики не умеют считать» о великом математике Карле Фридрихе Гауссе. 

Чтобы понять, с каким удовольствием математики общаются с царством чисел, пора наконец познакомиться с настоящим математиком. Карл Фридрих Гаусс был не просто настоящим математиком, а одним из самых знаменитых математиков в мире. Он жил с 1777 по 1855 год в Геттингене, где в течение 48 лет преподавал в университете. С математикой у Гаусса было хорошо с раннего детства. «Считать я научился раньше, чем писать», — говорил он. А его отец вспоминал, как сын однажды указал ему на ошибку в подсчётах. А ведь малышу в ту пору было всего три года! Так что Гаусс был настоящим вундеркиндом, но таким, которого в школе замечают только на уроке математики. У его учителя, герра Бюттнера, была привычка давать своим ученикам на уроке ужасно длинные арифметические примеры. Это позволяло ему, пока дети корпят над заданиями, спокойно дремать или ковырять в носу.

Однажды он задал своим ученикам сложить сто чисел. +2+3+4+… и так далее до 100. Весь класс храбро принялся считать. 1 + 2 будет 3, + 4 — семь, + пять — 12… Только один мальчик не стал считать, как все: маленький Карл Фридрих, подумав пару секунд, записал на своей грифельной доске одно-единственное число и хлопнул её на стол учителю со словами: «Вот и всё!»

Учитель Бюттнер сначала протер глаза, а затем потер руки. Что такое? С чего этот малявка отважился дерзить? Он сурово взглянул на маленького Карла Фридриха, но тот только довольно улыбался в ответ. Когда закончится урок, решил герр Бюттнер, я научу маленького наглеца, как себя вести, парочкой ударов розог. Но когда в конце урока все ученики сдали свои работы, все получилось совсем не так, как представлял учитель. Он посмотрел ответы ребят, и на него напал сильнейший приступ кашля. Пока другие мучились с вычислениями и лишь немногие получили правильный ответ, Гаусс на своей доске написал одно-единственное число. Причем правильное. Что это, чудо?

Вовсе нет. Карл Фридрих Гаусс просто наглядно показал своему учителю разницу между арифметикой и математикой. Пока учитель и остальные ученики мучительно складывали все числа от 1 до 100 одно за другим, он подошел к заданию математически. Он заметил, что начальные числа образуют очень удобные пары с конечными. То есть 1 и 100, 2 и 99, 3 и 98. Если так продолжать дальше, то получится 50 пар, дающих одинаковую сумму. 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и так далее. Теперь осталось только умножить в уме 101 на 50 и записать правильный ответ: 5050.

Конечно, маленький Карл Фридрих Гаусс и считать отлично умел. Каждый математик умеет выполнять основные арифметические действия. Но смысл математики состоит не в вычислениях.

Математика — это по большей части поиск решений и описание принципов, стоящих за теми или иными задачами

Так как эти принципы нужно описывать очень точно, математики с удовольствием пользуются формулами. Просто так удобнее. Если бы мы захотели описать идею Гаусса обычными словами, нам понадобилось бы много места. Давайте попробуем. «Для того чтобы найти сумму ряда слагаемых, начинающегося с единицы и заканчивающегося сотней, каждый последующий член которого увеличивается на один, необходимо сложить попарно эти числа — первое с последним, второе с предпоследним и так далее — и умножить полученную сумму на половину количества слагаемых в ряде…» И так далее и тому подобное. Кто это поймет? Кто сможет разобраться?

Карл Фридрих Гаусс

Карл Фридрих Гаусс

А посмотрите, как коротко и понятно будет выглядеть такое равенство, если записать его цифрами и математическими символами: 1 + 2 + 3 +… + 100 = (1 + 100) × 100/2, . А на случай, если учителю взбредет в голову заставить складывать числа не до 100, а до 200 или до 300, можно переделать это равенство так, чтобы оно подходило для всех подобных случаев. Для этого мы просто заменим число 100 на букву n: 1 + 2 + 3 +… + n = (1 + n) × n/2. Буква n в этом равенстве выступает в роли заместителя, её можно заменить на любое натуральное число. Такая хитрость с заместителями чисел — гениальное изобретение, математики всего мира очень часто пользуются им. Конечно, в качестве заместителей не всегда используют именно n. Это могут быть и n, и x, и y, и a, и b — смотря по обстоятельствам. Но как бы они ни назывались, функция у них всегда одинаковая: замещать что-то другое. Они указывают на то, что уравнение справедливо не только для одного конкретного случая, а для всех подобных случаев.

Источник: https://mel.fm/chto-pochitat/7581624-arithmetic
Семейные экскурсии

Увлекательные путешествия
для детей и родителей

14 октября
Ciao! Come stai?

Наши предложения Отзывы участников

Отмечаем дни рождения

Индивидуальный сценарий
Оформление. Развлечения.

Услуги и цены Отзывы Полезная страничка

Выпускные для дошкольников

Услуги и цены Отзывы

Фотогалерея
  • Познавательная экскурсия театр им. Г. Камала

    Экскурсия в театр им. Г. Камала

  • Семейная экскурсия в Дендрарий

  • Семейная экскурсия в мужской монастырь

  • Арбузник

  • Группа "Играем в школу"

  • Осенние праздники

  • Новый год 2015 (с 4 до 8 лет)

  • Зимний лагерь. Кырлай - 2016

Посмотреть все фотоальбомы

Видеоархив
Смотреть все видео
 
 

Обслуживание сайта

Яндекс.Метрика Карта сайта

г. Казань, ул. Даурская, д. 22, +7 (962) 559-87-00, 8-92-74-400-572

 
наверх